Synthesis and Structural Characterization of Table I. Crystallographic Data for [NEt4]4[Sn₂Te₆] **[NEt4]***[Sn₂Te₆]*

$$ **lames A.Ikrs'**

Department of Chemistry, Northwestern University, Evanston, Illinois **60208**

Received June 29. 1992

Introduction

During the past two decades the family of known homoleptic metal chalcogenide species $(M_nQ_m^p)$ (Q = S, Se, Te) has grown dramatically.¹⁻⁴ Most of this growth has been in metal sulfide **species,** but recent efforts in this and other laboratories have augmented significantly the number of known metal selenide
and telluride species. Telluride anions include $[M(Te_4)_2]^4$, M $=$ Pd,⁵ Hg,^{6,7} Cd,^{6,7} and Zn,⁷ [NbTe₁₀]³⁻,⁸ and [Cr₃Te₂₄]³⁻,⁹ prepared by solution methods, and $[Au_4Te_4]^{4-10}$ $[Au_2Te_4]^{2-11}$ $[Hg_4Te_{12}]^{\leftarrow}$,¹² and $[Sn_2Te_6]^{\leftarrow}$,¹³ prepared from the solubilization of solid-state materials. Encouraged by our recent syntheses of the $[Ni_4Te_{22}]^{4-14}$ and $[Pt_4Te_{22}]^{4-15}$ species, containing Ni^{IV} and Pt^{IV}, respectively, we have investigated the chemistry of other potential MIv cations in the presence of polytelluride anions. Here we report an improved synthesis by solution methods of the $[Sn_2Te_6]^+$ anion as well as the structure of $[NEt_4]_4[Sn_2Te_6]$.

Experimental Section

All reagents were purchased from Aldrich Chemical Co., Milwaukee, WI. Li₂Te was obtained by combining the stoichiometric amounts of freshly cut Li metal and Te powder in liquid ammonia under an *Ar* atmosphere. EDAX (energy dispersive analysis by X-rays) measurements **were** made with a Hitachi 570 **scanning** electron microscope. The microanalysis was performed by Oneida Research Services, Whitcboro, NY.

Synthesis of $[NEt_4]$ [Sn₂Te₆]. Li₂Te (500 mg, 3.53 mmol), Te (1.0 g, 7.8 mmol), and LiBH₄ (100 mg, 4.6 mmol) were dissolved in DMF (30 mL). To this solution was added dropwise a solution of anhydrous SnCl₂ (189 mg. 1.00 mmol) in DMF (10 mL). The resulting solution was stirred at 90 °C for 45 min and filtered hot. Addition of NEt.Cl (1 g in 10 mL of CH₃CN) onto the filtrate produced black, hexagonal plateshaped crystals Over a period of 2 days. Additional crystals were obtained by layering ether on the top of the filtrate. Total yield: 650 mg, 43% based on Sn. Quantitative analysis with EDAX on several crystals showed a Sn:Te ratio very close to 1:3. Anal. Calcd for $C_{32}H_{80}N_4Sn_2Te_6$: C, 25.22; H, 5.29; N, 3.67. Found: C, 24.86; H, 5.23; N, 3.65. The crystals are hygroscopic and are soluble in most polar solvents, including water.

Crystallography. Preliminary crystallographic information for [NEt₄]₄[Sn₂Te₆] was obtained at -163 °C on an Enraf-Nonius CAD4 diffractometer. The crystal was then transferred to a Picker FACS-1 diffractometer for determination of the final cell constants and for data

- Miiller, A.; Diemann, E. *Adu. Inorg. Chem.* 1987,31, 89-122.
- (2) Coucouvanis, D.; Hadjikyriacou, A.; Draganjac, M.; Kanatzidis, M. G.; Ileperuma, *0. Polyhedron* 1986,5, 349-356.
- **Krebs,** B. *Angew. Chem., hi. Ed. Engl.* 1983,22, 113-134.
- **Ansari,** M. A.; Ibers, J. A. *Card. Chem. Rev.* 1990,100,223-266.
- Adam, R. D.; Wolfe, T. A.; Eichhorn, **B.** W.; Haushalter, R. C. *Polyhedron* 1989,8, 701-703. Kanatzidis, M. G. Unpublished results. **See:** Kanatzidis, M. G.
- Comments Inorg. Chem. 1990, 10, 161-195.
McConnachie, J. M.; Ibers, J. A. Unpublished results.
Flomer, W. A.; Kolis, J. W. J. Am. Chem. Soc. 1988, 110, 3682-3683.
Flomer, W. A.; O'Neal, S. C.; Pennington, W. T.; Jeter, D.;
-
-
- W.; Kolis, J. W. *Angew. Chem., Inr. Ed. Engl.* 1988,27, 1702-1703.
- Haushalter, R. C. *Angew. Chem., Inr. Ed. Engl.* 1985, *24,* 432-433. Hawhalter, R. C. *Inorg. Chim. Acto* 1985,102, L37-L38.
-
- Haushalter, R. C. Angew. Chem., Int. Ed. Engl. 1985, 24, 433–435.
Huffman, J. C.; Haushalter, J. P.; Umarji, A. M.; Shenoy, G. K.;
- Hawhalter, R. *C. Inorg. Chem.* 1984, 23, 2312-2315. McConnachie, J. M.; **Ansari.** M. A.; Ibers, J. A. *Inorg. Chim. Acra*
- McConnachie, J. M.; Bollinger, J. C.; Ibers, J. A. Unpublished **results.** 1992,198-200, 85-93.

^{*a*} U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table UI. Selected Bond Lengths (A) and Bond Angles (deg) in $[NE_{4}]_{4}[Sn_{2}Te_{6}]$

$Sn(1)\cdots Sn(2)$	3.781(2)	$Sn(1)-Te(3)$	2.812(2)
$Sn(1)-Te(2)$	2.804(2)	$Sn(2)-Te(2)$	2.802(2)
$Sn(1)-Te(1)$	2.686(1)	$Sn(2)-Te(4)$	2.684(1)
$Sn(2)-Te(3)$	2.818(2)		
$Te(1) - Sn(1) - Te(2)$	109.8 (1)	$Te(2) - Sn(1) - Te(3)$	95.4(1)
$Te(1) - Sn(1) - Te(3)$	109.2(1)	$Te(1) - Sn(1) - Te(1A)$	120.5(1)
$Te(2) - Sn(2) - Te(3)$	95.4(1)	$Te(3) - Sn(2) - Te(4)$	111.2(1)
$Te(2) - Sn(2) - Te(4)$	108.0 (1)	$Te(4) - Sn(2) - Te(4A)$	120.2(1)
$Sn(1)-Te(2)-Sn(2)$	84.8(1)	$Sn(1)-Te(3)-Sn(2)$	84.4(1)

collection. Data collection and proccssing were carried out by methods standard in thie laboratory.I6 **The** structure was solved and **refmed** with the SHELXTL-PC¹⁷ crystallographic package. Crystal data and some experimental details are given in Table I. Final positional parametem of all non-hydrogen atoms are given in Table II. Selected bond distances and bond angles for the $[Sn_2Te_6]^+$ anion are given in Table III. Further crystallographic details, hydrogen atom parameters, and anisotropic thermal parameters are available as supplementary material.

Results and Discussion

Reaction of $SnCl₂$ with a polysulfide solution affords the $[Sn(S₄)₂(S₆)]²⁻¹⁸$ anion while reaction with a polyselenide solution

⁽¹⁶⁾ Waters, **J.** M.; Ibers, J. A. *Inorg. Chem.* 1977, *16,* 3273-3277. (17) Sheldrick, G. M. SHELXTL-PC Version 4.1, an integrated system for

solving, refining, and displaying crystal **structures** from diffraction **data, Siemens** Analytical X-Ray Instruments, Inc., Madison, WI.

Figure 1. A view of the $[\text{Sn}_2\text{Te}_6]^{\leftarrow}$ anion. The 50% probability ellipsoids **are shown.**

affords the $[Sn(Se_4)_3]^{2-}$ anion.^{19,20} Our attempts to prepare via a similar route the hypothetical $[Sn(Te₄)₃]²⁻$ anion, or indeed any characterizable Sn/Te **species,** have not been successful. However, when we carry out the reaction of $SnCl₂$ with a polytelluride solution in the presence of LiBH4, we obtain in **good** yield the binuclear anion $[Te_2Sn(\mu-Te_2SnTe_2)]^{\text{4}}$ (herein abbreviated $[Sn_2Te_6]$ ^{\leftarrow}). The role of BH_4^- in the synthesis seems to be twofold. It not only provides dry reaction conditions, a must in Te chemistry, by reacting with traces of moisture present in **DMF,** but it also reacts with any Te formed from thedecomposition of $[Sn_2Te_6]^{\mathcal{L}}$ or $Te_n^{\mathcal{L}}$ species to regenerate soluble $Te_n^{\mathcal{L}}$ species. The $[Sn_2Te_6]$ ⁺ anion has also been obtained from the solubilization of the solid-state material of stoichiometry K_4SnTe_4 .¹³ The synthesis described here is simpler and more convenient.

The sulfur and selenium analogues of the $[Sn_2Te_6]^{\text{+}}$ anion are also known and were prepared by routes entirely different from the one described here.²¹⁻²⁵ The structures of all three anions $[Sn₂Q₆]$ ^{\leftarrow} (Q = S, Se, Te) are the same, consisting of two edgesharing $SnQ₄$ tetrahedra (Figure 1). In $[NEt₄]_{4}[Sn₂Te₆]$, the [Sn2TesIC ion **possesses a** crystallographically imposed mirror

G. Polyhedron **1989.8, 1999-2001.**

plane that passes through the Sn and bridging Te atoms; in $[NMe₄](Sn₂Te₆],¹³$ the anion instead possesses a center of symmetry, but there are no signifcant differences in **thestructurea** of these two $[Sn_2Te_6]^+$ anions. The Sn-Sn distances in [NEt],[Sn2Tes] (3.781 (2) **A)** and in [NMe4]4[Sn~Tes] (3.782 (2) **A)** are identical and are, **as expected,** much longer than **thocre** observed in Cs₄[Sn₂Se₆] (3.504 (1) Å),²⁵ Na₄[Sn₂Se₆]-13H₂O $(3.554 (1)$ and $3.504 (1)$ Å),²³ and Na₄[Sn₂S₆]-14H₂O (3.341 (1) \hat{A}).²⁶ The Sn-Te_{bridging} distances in the $[Sn_2Te_6]^{\text{+}}$ anion (NEt+,2.812 **(2),2.802(2);NMe4+,2.794(1),2.804(1)A)are** significantly longer than the $Sn-Te_{\text{terminal}}$ distances (NEt₄⁺, 2.686) distances are shorter than those in the solid-state compounds NarSnTe4 (2.740-2.759 **A)27** and K&nzTes (2.725 (1)-2.729 (1) Å).²⁸ $(1), 2.689(1); NMe₄⁺, 2.689(1), 2.700(1)$ Å). These Sn-Te_{terminal}

[NEt]4[Sn2T%] is soluble in **DMF,** CH,CN, and HzO. **The** resultant solution reacts instantly with Cu⁺, Ni²⁺, and Co²⁺; characterization of the species thus formed is in progress.

Acknowledgment. This research was supported by the National Science Foundation (Grant No. CHE-8922754).

Supplementary Material Available: Tables of crystallographic details, **atomic coordinates, bond lengths and angles, anisotropic** thermal **parameters, and hydrogen atom** coordinated **(7 pages). Ordering information is given on any current masthead page.**

- **(20) Huang, S.-P.; Dhingra, S.; Ko~t~idi~, M.** *G. Polyhedron* **1990,9,1389- 1395.**
- Zhou, X.-M. *J. Am. Chem. Soc.* **1990**, 112, 3706-3707.

(22) Krebs, B.; Pohl, S.; Schiwy, W. *Angew. Chem., Int. Ed. Engl.* **1970**, 9, **(21) Batchelor, R. J.; Einrtein, F. W. B.; Gay, I. D.; Gu, J.-H.;** pinto, **B. M.;**
- **897-898.**
- (23) Krebs, B.; Uhlen, H. Z. *Anorg. Allg. Chem.* 1987, 549, 35-45.
- **(24) Jaulmca, S.; Houenou, P.** *Mater. Res. Bull.* **1980,15,911-915.**
- **(25) Sheldrick, W. S.; Braunbeck, H.** *G. 2. Narwfwsch., B Chem.* **Scl. 1989,44.851-852.**
- **(26) Krclu, B.; Pohl, S.; Schiwy, W.** *2. Anorg. Allg. Chem.* **1972,393,241- 252.**
- **(27) Einmann, B.; Schilfer, H.; Schrod, H.** *2. Natwforsch., B Anorg.*
- **(28) Dittmar, G.** *2. Anorg. Allg. Chem.* **1978,453,68-18.** *Chcm.,* **Org. Chcm. 1983,38,921-923.**

⁽¹⁸⁾ Müller, A.; Schimanski, J.; Römer, M.; Bögge, H.; Baumann, F.-W.; **Eltzner, W.; Krickemeyer, E.; Billerbeck, U.** *Chimia* **1985,39,25-26. (19) Banda, R. M. H.; Cusick, J.; Scudder, M. L.; Craig, D. C.; Dance, I.**